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Outlines 

• Data Analysis (3-D and 4-D Assimilation 

concept) 

• Kriging 

• Spectral Analysis 

• Fuzzy classification 

• Fuzzy-Neural prediction model 
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Precipitation field statistics 
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Outgoing Longwave Radiation 

 

OLR 
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Variability Field 
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Types of Uncertainties 
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Analysis.  

 

An analysis is the production of an 

accurate image of the true state of 

the atmosphere, ocean and surface 

at a given time, represented in a 

model as a collection of numbers.  
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Concept of Data Assimilation 

• The background information can be a 
climatology or a trivial state; it can also be 
generated from the output of a previous 
analysis, using some assumptions of 
consistency in time of the model state, like 
stationarity (hypothesis of persistence) or the 
evolution predicted by a forecast model. In a 
well-behaved system, one expects that this 
allows the information to be accumulated in time 
into the model state, and to propagate to all 
variables of the model.  
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Concept of Data Assimilation 
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A summarized history of the main data assimilation algorithms used in 

meteorology and oceanography, roughly classified according to their 

complexity (and cost) of implementation, and their applicability to real-time 

problems. Currently, the most commonly used for operational applications 

are OI, 3D-Var and 4D-Var.  
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Cressman analysis 

observations have no weight 
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An example of Cressman analysis of a one-dimensional field. The background 

field   is represented as the blue function, and the observations in green. The 

analysis (black curve) is produced by interpolating between the background 

(grey curve) and the observed value, in the vicinity of each observation; the 

closer the observation, the larger its weight.  
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The Cressman method is not satisfactory in 

practice for the following reasons: 

 

•   if we have a preliminary estimate of the analysis with a 
good quality, we do not want to replace it by values 
provided from poor quality observations.  

•   when going away from an observation, it is not clear how 
to relax the analysis toward the arbitrary state, i.e. how 
to decide on the shape of the function   . 

 •   an analysis should respect some basic known 
properties of the true system, like smoothness of the 
fields, or relationship between the variables (e.g. 
hydrostatic balance, or saturation constraints). This is 
not guaranteed by the Cressman method: random 
observation errors could generate unphysical features in 
the analysis. 
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Kriging 
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The ingredients of a good analysis:  
• 1)   one should start from a good-quality first guess, i.e. a 

previous analysis or forecast that gives an overview of 
the situation, 

• 2)   if observations are dense, then one assumes that the 
truth probably lies near their average. One must make a 
compromise between the first guess and the observed 
values. The analysis should be closest to the data we 
trust most, whereas suspicious data will be given little 
weight (e.g. for less accurate remote sensing data). 

• 3)   the analysis should be smooth, because we know 
that the true field is. When going away from an 
observation, the analysis will relax smoothly to the first 
guess on scales known to be typical of the usual 
physical phenomena. 

• 4)   the analysis should also try to respect the known 
physical features of the system. Of course, it is possible 
in exceptional cases that unusual scales and imbalances 
happen, and a good analyst must be able to recognize 
this, because exceptional cases are usually important 
too. 
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State vector  

• a column matrix called the state vector x  

• a state vector   , the true state at the time of the 

analysis  

•     background estimate of the true state before 

the analysis is carried out  

• theanalysis is denoted    ,  

which is what we are looking for  
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Error analysis1 
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Error analysis2 
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Notations: 
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Hypotheses 
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Least-squares analysis equations  
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Sketches of the shapes of the matrices and vector dimensions involved in an  

Optimal assimilation analysis  
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Conclusion 

We have seen that there are two main ways of defining 
the statistical analysis problem: 
 •   either assume that the background and error 
covariances are known, and derive the analysis 
equations by requiring that the total analysis error 
variances are minimum,  

      •   or assume that the background and observation 
error PDFs are Gaussian, and derive the analysis 
equations by looking for the state with the maximum 
probability. 

Both approaches lead to two mathematically equivalent 
algorithms: 
 •   the direct determination of the analysis gain matrix   , 

      •   the minimization of a quadratic cost function. 
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A simple scalar illustration of least-squares estimation  
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A simple scalar illustration of least-squares estimation 2 
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Error analysis 
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Error analysis 2 
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The analysis/forecast cycle of 4-D assimilation scheme 
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  Relationship between EOF and Fuzzy sets 
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Enhancement of correlation within 

fuzzy clusters: 

The correlation between the variable couples: 

 air temperature, humidity, pressure and 

humidity  

0.4-0.6  -  without clussification 

0.8-0.9  - within fuzzy clusters: 
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Motivation for this study: 

 
1. High spatial variability of precipitation 

field – it is hard to describe it by means of 

differential equation with a low resolution 

2. Precipitations follow to changes in 

atmospheric circulation regimes - rapid rain 

rate changes are occurred after transition 

from one regime to another 

3. There is no considerable rain rate 

correlation to other meteorological 

variables, but there are feedback linkages to 

be revealed  
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Data sets:  

NCEP- NCAR 

Reanalysis data: 

Daily and Monthly 
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Seasonal correlation of April-March (1995-2005) 

precipitation rate with February-March NAO (index leads 

by 2 months) in Mediterranean area 
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Seasonal correlation of April-March (1995-2005) 
precipitation rate with February-March AO (index leads 

by 2 months) in Mediterranean area  
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. Seasonal correlation of April-May (1965-1975) 

precipitation rate with February-March NAO (index leads 

by 2 months) in Mediterranean area 
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Seasonal correlation of June-July (1995-2005) 

precipitation rate with April-May NAO (index 

leads by 2 months) in Mediterranean area 
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Seasonal correlation of September-October (1995-

2005) precipitation rate with July-August NAO (index 

leads by 2 months) in Mediterranean area 
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FUZZY ALGORITHM  

• Clustering analysis is a fundamental but important tool in 
statistical data analysis. In the past, the clustering 
techniques have been widely applied in interdisciplinary 
scientific areas such as pattern recognition, information 
retrieval, clinical diagnosis, and microbiological analysis. 
In the literature, the k-means is a typical clustering 
algorithm, which partitions the input data set  that 
generally forms k* true clusters into k categories (also 
simply called clusters without further distinction) with 
each represented by its center (Pokrovsky et al., 2002)).  
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Introduction 

 

 Fuzzy Logic was initiated in 1965, by Dr. Lotfi A. Zadeh, professor for computer  

science at the university of California in Berkley. 

 

 Basically, Fuzzy Logic is a multivalued logic, that allows intermediate values to be 

defined between conventional evaluations like true/false, yes/no, high/low, etc. 

 

 Fuzzy Logic starts with and builds on a set of user–supplied human language rules. 

 

 Fuzzy Systems convert these rules to their mathematical equivalents. 

 

 This simplifies the job of the system designer and the computer, and results in much 

more accurate representations of the way system behaves in real world. 

 

 Fuzzy Logic provides a simple way to arrive at a definite conclusion based upon 

vague, ambiguous, imprecise, noisy, or missing input information. 



29-30 July 2014 Remote Sensing for Global Water 

Circulation to Climate Change 



29-30 July 2014 Remote Sensing for Global Water 

Circulation to Climate Change 

Fuzzy Logic 

 

 What is Fuzzy Logic? 

 

Fuzzy Logic is a superset of conventional (Boolean) logic that has been extended to 

handle the concept of partial truth, i.e. truth values between “completely true” and 

“completely false”. 
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Fuzzy Logic 

 

 How Fuzzy Logic works? 

 

- In Fuzzy Logic, unlike standard conditional logic, the truth of any statement is a matter of degree. 

(e.g How cold is it? How high shall we set the heat? ) 

 

- The degree to which any Fuzzy statement is true is denoted by a value between 0 and 1. 

 

- Fuzzy Logic needs to be able to manipulate degrees of “may be” in addition to true and false. 

 

 Example: 

 

tall(x) = {  

  0,    if height(x) < 5 ft.,  

 (height(x)-5ft.)/2ft., if 5 ft. <= height (x) <= 7 ft.,  

  1,    if height(x) > 7 ft.  

 }  

U: universe of discourse (i.e. set of people) 

TALL: Fuzzy Subset 

0.5 

1 

0 5 7 

Height, ft.  
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Fuzzy Sets 

 

  In classical mathematics we are familiar with what we call crisp sets. In this method, the 

characteristic function assigns a number 1 or 0 to each element in the set, depending on 

whether the element is in the subset A or not. 

 

1 

0 0.5 0.8 

A 

  This concept is sufficient for many areas of application, but it lacks flexibility for some 

applications like classification of remotely sensed data analysis. 

 

 The membership function is  a graphical representation of the magnitude of participation of 

each input. It associates weighting with each of the inputs that are processed.  

1        In set A 

0 Not in set A 

1 

0 0.4 

A 
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Operations on Fuzzy 

Sets 
Fuzzy AND: 



29-30 July 2014 Remote Sensing for Global Water 

Circulation to Climate Change 

Operations on Fuzzy Sets 

(contd.) 
Fuzzy OR: 
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Fuzzy NOT: 

Operations on Fuzzy Sets 

(contd.) 
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Probability Vs Fuzzy 

Logic 

Probability Fuzzy Logic 

Probability Measure  Membership Function 

Before an event happens 

 

After it happened 

 

Measure Theory 

 

Set Theory 

 

Domain is 2U (Boolean 

Algebra) 

 

Domain is [0,1]U (Cannot be 

a Boolean Algebra) 
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Properties 
The following rules which are common in classical set theory also apply to Fuzzy Logic. 

 

 De Morgan's Law: 

  

 

 Associativity: 

 Commutativity: 

 Distributivity: 
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Fuzzy Systems 

Fuzzification Fuzzy Inference Defuzzification 

Inputs Outputs 
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Conclusions 

 Fuzzy Logic provides a different way to approach a control or classification 

problem. This method focuses on what the system should do rather than trying to 

model how it works. 

 

 Fuzzy approach requires a sufficient expert knowledge for the formulation of the 

rule base, the combination of the sets and the defuzzification.  

 

 Fuzzy Logic might be helpful, for very complex processes, when there is no simple 

mathematical model. 
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Pros & Cons 

 Advantages: 

  

 - Helpful for very complex or highly  nonlinear processes. 

 - Allows use of “fuzzy” concepts like medium, low, etc. 

 - Biggest impact is for control problems. 

 - Help avoid discontinuities in behavior.  

 

 Disadvantages: 

  

 - Sometimes results are unexpected and hard to debug. 

 - Computationally complicated. 

 - According to literature, Fuzzy Logic is not recommendable, if conventional 

   approach yields a satisfying result. 
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Fuzzy System 

Applications 
1.  Pattern Recognition and Classification 

 

2.  Fuzzy Clustering 

 

3.  Image and Speech Processing 

 

4. Fuzzy Systems for Predictions 

 

5.  Fuzzy Control 

 

6.  Monitoring 

 

7.  Diagnosis 

 

8.  Optimization and Decision Making 

 

9.  Group Decision Making 
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K-means Algorithm 
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Although the k-means technique has been widely used due to 

its easy implementation, it has two major drawbacks: 

(1) It implies that the data clusters are spherical because it 

performs clustering based on the Euclidean distance only; 

(2) It needs to pre-assign the number, k, of clusters. Many 

experiments have shown that the k-means algorithm can work 

well when k is equal to k*. However, in many practical cases, 

it is impossible to know the exact cluster number in advance. 

Under the circumstances, the k-means algorithm often leads to 

a poor clustering performance. 
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Clustering based on k-means is closely related to a number 

of other clustering and location problems. A k-means 

algorithm is measured by two criteria: intra-cluster 

criterion and inter-cluster criterion. These include the 

Euclidean k-medians, in which the objective is to minimize 

the sum of distances to the nearest center, and the 

geometric k-center problem, in which the objective is to 

minimize the maximum distance from every point to its 

closest center. K-means is the most popular iterative 

centroid-based divisive algorithm. The specific fuzzy 

classification algorithm considered herein is now recalled 

and briefly discussed (Matoušek, 2000).  
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In such algorithms the definition of centroid will be used 

extensively; specifically, the centroid of M, say w , is given 

by 

i

N

i

x
N

w 



1

1
(10.1) 
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where     is the i-th column of matrix X. Similarly, the 

centroids of the sub-clusters     and     , say     and        , 

are given by: 
lw rw

ix
lX rX

il

N

il

l X
N

w
l

,

1

1



 ir

N

i

r Xw
r

,

1






where                and ,        are the i-th columns of          and  , 

respectively  
ilX , irX , lX rX

(10.2) 
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k-means algorithm: 



29-30 July 2014 Remote Sensing for Global Water 

Circulation to Climate Change 



29-30 July 2014 Remote Sensing for Global Water 

Circulation to Climate Change 



29-30 July 2014 Remote Sensing for Global Water 

Circulation to Climate Change 



29-30 July 2014 Remote Sensing for Global Water 

Circulation to Climate Change 



29-30 July 2014 Remote Sensing for Global Water 

Circulation to Climate Change 



29-30 July 2014 Remote Sensing for Global Water 

Circulation to Climate Change 



29-30 July 2014 Remote Sensing for Global Water 

Circulation to Climate Change 



29-30 July 2014 Remote Sensing for Global Water 

Circulation to Climate Change 



29-30 July 2014 Remote Sensing for Global Water 

Circulation to Climate Change 



29-30 July 2014 Remote Sensing for Global Water 

Circulation to Climate Change 

Fuzzy Classification of 

atmospheric circulation 

regimes in Asia 
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longitude

Classification of atmospheric circulation patterns (U850&V850) in Asia: class 2 (1-160 days)
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Longitude

Classification of atmospheric circulation patterns (U850&V850) in Asia: class 3 (161-269 days)
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Precipitation Field Statistics in Northern Asia 

CMAP Data Set for 1979-2011 
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longitude

Rain Rate Variability (mm/day) - STD - in Northern Asia: August, 1989-2010

50

55

60

65

70

75

80

la
ti
tu

d
e

0

0.125

0.25

0.375

0.5

0.625

0.75

0.875

1

1.125

1.3

1.6

2.1

2.6



29-30 July 2014 Remote Sensing for Global Water 

Circulation to Climate Change 



29-30 July 2014 Remote Sensing for Global Water 

Circulation to Climate Change 
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Rain Rate Variability Field - in Northern Asia for August, 1989-2010: EOF N1.  (Pokrovsky, 2012)
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Rain Rate Variability Field - in Northern Asia for August, 1989-2010: EOF N2.  (Pokrovsky, 2012)
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1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008

Years

Average over Northern Asia Precipitation Rate (mm/day) distribution by years and monthes
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Fuzzy Classification of 

atmospheric circulation 

regimes in Europe 
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Monthly circulation regime 1 (winter and early spring): 

the joint pattern for U850-V850 and responding 

precipitation rate (mm/day) fields marked by blue color  
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Decision Making 
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Probabilities and Costs of Alternative 

Projects: A and B 
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The 95% confidence levels are associated with the higher probabilities of 

exceeding 

the desired maximum target and the 5% confident levels are associated with the 

more desirable lower probabilities of exceeding the desired maximum target. 
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Bayesian decision theory (4):
Bayesian Theorem

)(

)()|(
)|(

XP
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XWP 

)()|()(
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WPWXPXP 

(1)

(2)
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Droughts and Floods are related to 

long-lived extreme precipitation events 



29-30 July 2014 Remote Sensing for Global Water 

Circulation to Climate Change 

Fuzzy-Neural Forecasting methodology 
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Fuzzy classification of precipitation 

anomalies in Europe (July) 
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Three most frequent rain rate 

distribution in July 

1. Wet weather in Northern Europe 

(Scandinavia and Russia) – high NAO 

2. Rainy weather in Western Europe and 

dry or even drought conditions in 

Eastern part of European Russia 

3. Extreme rainy in countries of Central and 

Eastern Europe (e.g. floods) 
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Fuzzy classification of the SST in North Atlantic  

in May 
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Monthly circulation regime 2 (summer): the joint pattern for 

U850-V850 and responding precipitation rate (mm/day) 

fields marked by blue color 
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Major circulation regimes over eastern 

North Atlantic and Europe in summer by 

three vorticity poles:  

• North-Western (Scandinavia)  

• Western Mediterranean  

• Caucasian  
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Fuzzy classification of 

precipitation regimes in July 
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Calculating the distribution of a performance 

measure from the distributions of its 

input X(t) and predicted Y(t) variables 
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Three most frequent rain rate 

distribution in July 

• Wet weather in Northern Europe 

(Scandinavia and Russia) – high NAO 

• Rainy weather in Western Europe and dry 

or even drought conditions in Eastern part 

of European Russia 

• Extreme rainy in countries of Central and 

Eastern Europe (e.g. floods) 
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Monthly circulation regime 3 (autumn and early winter): 

the joint pattern for U850-V850 and responding 

precipitation rate (mm/day) fields marked by blue color 

(mm/day)  
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In late fall and winter the vorticity system 

consists of three other poles:  

• North-Western  

• Northern Africa  

• Arctic Russia (Kara Sea area)  
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Climatology (anomalies) for July 1958-98:  

averaged over 45-70 N; 5-50 E  

Surface air 

temperature 

(C) 

Precipitation 

((mm/day)) 



29-30 July 2014 Remote Sensing for Global Water 

Circulation to Climate Change 

Climatology (anomalies) for July 1958-98:  

averaged over 45-70 N; 5-50 E  

Sea Level 

Pressure 

(HPa) 

Precipitation 

(mm/day) 
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Preliminary conclusions 

• Rain rate is more uniformly distributed in the 

winter in various latitude belts across Europe 

than in summer  

• A zonal circulation type dominates in this 

case and more precipitation is delivered from 

the Atlantic.  

• More intensive precipitations are occurred in 

Southern Europe because of strong moisture 

transport into this area from Atlantic  
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Neural network methodology advantages: 

• Flexibility in description of the arbitrary non-

linear dependencies 

• Easy incorporation of the additional and 

renewal feedbacks 

• Fast self-learning feature 

• High approximation fit to measurement data 

achieved by NN model 
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Fuzzy-Neural Model 



29-30 July 2014 Remote Sensing for Global Water 

Circulation to Climate Change 

Main low frequency oscillation areas 

(ENSO, NAO, AO) are included in 

predictor analysis  
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Why “slow oscillations”were selected? 

• Slow oscillations exhibit the highest amplitudes 

among other frequencies 

• Slow oscillations explain the most part of total 

variability 

•  Slow oscillations are most stable to 

perturbation in initial conditions for numerical 

weather models based on differential equation 

solution 
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Temperature Field Seasonal 

Prediction 

(Anomalies) 
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Monthly Rain Rate Field 

Seasonal Prediction for July 

1988 
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Conclusions 

• First attempt to develop an intellectual 
climate model has been carried out 

• Its principal distinctive features are as 
following: 

1. Self-learning ability 

2. Accumulation of past observing information 
with saving all changes in inter-parameter 
links 

3. Adaptation of model feedbacks to changes in 
observing samples and its trends  
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