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Outlines

« Data Analysis (3-D and 4-D Assimilation
concept)

 Kriging

» Spectral Analysis

* Fuzzy classification
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Precipitation field statistics
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lattitude

Global Mean field for precipitation annual sums (mm per year) for 32 years (1979-2009, CMAP data)
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Outgoing Longwave Radiation

OLR
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lmpoTa

Global mean field of OLR (w/m”2) for 1979-2010
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Variabllity Field

29-30 July 2014 Remote Sensing for Global Water
Circulation to Climate Change



Global field for precipitation variability (STD) annual sums (mm per year) for 32 years (1979-2009, CMAP data)
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Types of Uncertainties

UNCERTAINTY
Knowledge Uncertaintv

Natural Variabilitv

Model Structure Temporal Variability
Parameter Error Spatial Variability
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Analysis.

An analysis Is the production of an
accurate image of the true state of
the atmosphere, ocean and surface
at a given time, represented In a
model as a collection of numbers.
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Concept of Data Assimilation

* The background information can be a
climatology or a trivial state; it can also be
generated from the output of a previous
analysis, using some assumptions of
consistency in time of the model state, like
stationarity (hypothesis of persistence) or the
evolution predicted by a forecast model. In a
well-behaved system, one expects that this
allows the information to be accumulated in time
Into the model state, and to propagate to all
variables of the model.
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Concept of Data Assimilation

sequential, intermittent assimilation:
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sequential, continuous assimilation:
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A summarized history of the main data assimilation algorithms used in
meteorology and oceanography, roughly classified according to their
complexity (and cost) of implementation, and their applicability to real-time

problems. Currently, the most commonly used for operational applications
are Ol, 3D-Var and 4D-Var.

A non-linear methods
Kalman smoother
k)

(4D-Var or) 4D-PSAS with model error

r Lg y fixed-lag Kalman smoother
EKF
intermittent 4D-Var or 4D-PSAS » long 4D-Var or 4D-PSAS
A A

3D-Var or 3D-PSAS

complexity

Optimal Interpolation (OI)

Cressman Successive Corrections
nudging
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Cressman analysis

The model state is assumed to be univariate and represented as grid-point values. If we
denote by X, a previous estimate of the model state (background) provided by
climatology, persistence or a previous forecast, and by (i) ,asetofi =1...... n

observations of the same parameter, a simple Kind of Cressman analysis is provided by
the model state X, defined at each grid point jaccording to the following update equation:

> wli, DEF) —xy (1)}

xa{j] = Ib‘j}-i_ " . s
@)
. . ' Rf_dlfj
wit, J) = max|0, ———
R'+d1fJ

where d; ; is a measure of the distance between points i and j . %,(7) is the background
state interpolated to point i . The weight function w(i, j) equals one if the grid point j is
collocated with observation i . It is a decreasing function of distance which is zero if

d; ;>R  where R is a user-defined constant (the "influence radius") beyond which the

ervatzg1 s have no welgrllQ
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An example of Cressman analysis of a one-dimensional field. The background
field is represented as the blue function, and the observations in green. The
analysis (black curve) is produced by interpolating between the background

(grey curve) and the observed value, in the vicinity of each observation; the
closer the observation, the larger its weight.

analysis

space
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The Cressman method is not satisfactory in
practice for the following reasons:

 If we have a preliminary estimate of the analysis with a
good quality, we do not want to replace it by values
provided from poor quality observations.

« when going away from an observation, it is not clear how
to relax the analysis toward the arbitrary state, i.e. how
to decide on the shape of the function

« an analysis should respect some basic known
properties of the true system, like smoothness of the
fields, or relationship between the variables (e.g.
hydrostatic balance, or saturation constraints). This is
not guaranteed by the Cressman method: random
observation errors could generate unphysical features in
the analysis.
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Simple Kriging (1)
* Consider a linear estimator:

Y=Y\ Y,)

* where Y(u,) are the residual data (data values minus the mean) and Y*(u) 1s
the estimate (add the mean back m)

* The error variance 1s defined as : .
E{Y (u) - Y(w)]” A-2ab*h

-\_Z.E{r(m.m)}_
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The ingredients of a good analysis:

* 1) one should start from a good-quality first guess, i.e. a
previous analysis or forecast that gives an overview of
the situation,

« 2) Iif observations are dense, then one assumes that the
truth probably lies near their average. One must make a
compromise between the first guess and the observed
values. The analysis should be closest to the data we
trust most, whereas suspicious data will be given little
weight (e.g. for less accurate remote sensing data).

« 3) the analysis should be smooth, because we know
that the true field is. When going away from an
observation, the analysis will relax smoothly to the first
guess on scales known to be typical of the usual
physical phenomena.

« 4) the analysis should also try to respect the known
physical features of the system. Of course, it is possible
In exceptional cases that unusual scales and imbalances
happen, and a good analyst must be able to recognize

2030 ljSpibecause exeeptenaleases ase usually important
too0. Circulation to Climate Change



State vector

 a column matrix called the state vector x

e a State vector |, the true state at the time of the
analysis X

* Xy background estimate of the true state before
the analysis is carried out

 theanalysis is denoted *a,
which is what we are looking for
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ne key fo data analysis is the use of the discrepancies between
hservations and state vector. According to the previous paragraph, this is
ven by the vector of departures at the observation points;

y-H(x)
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Error analysisl

Given a background field X, just before doing an analysis, there is one and
only one vector of errors that separates it from the true state:

If we were able to repeat each analysis experiment a large number of times,
under exactly the same conditions, but with different realizations of errors
generated by unknown causes, £, would be different each time. We can
calculate statistics such as averages, variances and histograms of
frequencies of €, . In the limit of a very large number of realizations, we
expect the statistics to converge to values which depend only on the
physical processes responsible for the errors, not on any particular
realization of these errors. When we do another analysis under the same
conditions. we do not expect to know what will be the error £. . but at least
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Error analysis2

The errors in the background and in the observations< are modelled as
follows:
background errors: €. = X,—X, | of average &, and covariances

B = (e,-%,)(e,—£&,) . They are the estimation errors of the

background state, i.e. the difference between the background state
vector and its true value. They do not include discretization errors.

observation errors: €, = ¥ - H(x,) | of average £, and covariances

R = (e,-£)(e,—£,) . They contain errors in the observation process

(instrumental errors, because the reported value is not a perfect image
of reality). errors in the design of the operator H , and
representativeness errors i.e. discretization errors which prevent x,

from being a perfect image of the true state2.
analysis errors: €, = X,-X, , of average £, . A measure |, -¢| of

these errors is given by the trace of the analysis error covariance matrix
A

Tr(A) = e, -&)° -

wilrvuiatuvl il v vwiniialc viialiyc



Notations:

The dimension of the model state is » and the dimension of the observation vectoris p . We
will clenote:

X, frue model state (dimension » )

Xy, background model state (dimension » )

X, analysis model state (dimension n )

v vector of observations (dimension p )

H observation operator (from dimension » to p )

B covariance matrix of the background errors (x,=X,) (dimension nxn )
R covariance matrix of observation errors (¥ -H[x,]) (dimension pxp )

A covariance matrix of the analysis errors (X,-X,) (dimension nxn )
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Hypotheses

The following hypotheses are assumed.:

- Linearized ohservation operator: the variations of the observation operator in the
vicinity of the background state are linear: for any x close enough to %, ,

H(x)-H(x,) = H(x-x,) where H is a linear operator.
- Non-trivial errors; B and R are positive definite matrices.

- Unbiased errors: the expectation of the background and observation errors is zero
ie.x,-x, =¥y-H(x)=0

- Uncorrelated errors: observation and background errors are mutually uncorrelated
i T
lL.e. (x,-x)y-H[y]) =0

- Linear analysis: we look for an analysis defined by corrections to the background
which depend linearly on background observation departures.

- Optimal analysis: we look for an analysis state which is as close as possible to the
true state in an r.m.s. sense (i.e. it is a minimum variance estimate).
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29-30

Least-squares analysis equations

(a) Ihe optimal least-squares estimator, or BLUE analysis, 15 defined by the

following interpolation equations:

where the linear operator K is called the gain, or weight matrix, of the analysis.

x, = X, +K(y-H[x,])

a

-l
K = BH (HBH' +R)

(a) The analysis error covariance matrix is, for any K :

A = (I-KH)B(I-KH) +KRK'

If K is the optimal least-squares gain, the expression becomes

(a) The BLUE analysis is equivalently obtained as a solution to the variational

optimization problem:

A= (I-KH)B

X, = Asgmind

J(x) = (x-x,) B (x —x) + (v - H[x]) R (y - H[x])
= J,(x) + J,(x)

(A1)

(A2)

(A3)

(A4)

(A3)



Sketches of the shapes of the matrices and vector dimensions involved in an

Optimal assimilation analysis

UH ol

K=BH{HBH%R

ﬁ—ﬂ

HBH'

t i | |:|

J(x)= (X—xb)TB'l[x—xb} + {y-HK}TR_]{}’-HX‘J

D:I—'l‘
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Conclusion

We have seen that there are two main ways of defining
the statistical analysis problem:
« either assume that the background and error
covariances are known, and derive the analysis
equations by requiring that the total analysis error
variances are minimum,

« or assume that the background and observation
error PDFs are Gaussian, and derive the analysis
equations by looking for the state with the maximum
probability.

Both approaches lead to two mathematically equivalent
algorithms:
« the direct determination of the analysis gain matrix |,

« the minimization of a quadratic cost function.
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A simple scalar illustration of least-squares estimation

Let us assume that we need to estimate the temperature 7, of a room.

We have a thermometer of known accuracy S, (the standard deviation of measurement error)
and we observe T, , which is considered to have expectation T, (i.e. we assume that the

observation is unbiased) and variance s, . In the absence of any other information the best
estimate we can provide of the temperature is T, , with accuracy o, .

However we may have some additional information about the temperature of the room. \We
may have a reading from another, independent thermometer, perhaps with a different
accuracy. \We may notice that everyone in the room is wearing a jumper-another timely piece
of information from which we can derive an estimate, although with a rather large associated
error. \We may have an accurate observation from an earlier date, which can be treated as an
estimate for the current time, with an error suitably inflated to account for the separation in
time. Any of these observations could be treated as a priori or background information, to be
used with T, in estimating the room temperature. Let our background estimate be T, , of
expectation T, (i.e. it is unbiased) and of accuracy S, . Intuitively T, and 7T, can be combined
to provide a better estimate (or analysis) of T, than any of these taken alone. We are going to
look for a linear weighted average of the form:

T = kT, +(1-k)T,

which can be rewritten as T, = T, + 2(T-T,) ,i.e. we look for a correction to the background
which is a linear function of the difference between the ohservation and the background.

2Y-5U JuUly Zul4 KeImotle oSensing 10r olopdl vvaler
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A simple scalar illustration of least-squares estimation 2

The error variance of the estimate is:
-:ri =(1l- k‘]:ﬂ'i + k:cri

where we have assumed that the observation and background errors are uncorrelated. We
choose the optimal value of £ that minimizes the analysis error variance:

2
Gy

Ji;-' =

% 5
g, T+ 0T,

which is equivalent to minimizing (Eig. 5 )

(T-Ty (T-T,)
2 + 2

gy, g,

J(I') = J(T)+J (T) =

29-30 Uul] \J LT INvllivie ol Idlllu 1VI IV UL vvaaluld
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Figure 5. Schematic representation of the variational form of the least-squares
analysis, in a scalar system where the observation y is in the same space as the model
v : the cost-function terms 7, and J, are both convex and tend to "pull" the analysis

towards the background ¥, and the observation y , respectively. The minimum of their
sum is somewhere between ¥, and y , and is the optimal least-squares analysis.

J(X)=Jb(x)+Jo(x)

COSt

Y
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Error analysis

It is interesting fo look at the variance of analysis error for the optimal & :

or

ﬁc- ﬂ.b

n:r;: = = = {l-flcrl,
1+[uamb} l*mb g, ]

which shows that the analysis error variance is always smaller than both the background and
ohservation error variances, and it is smallest if both are equal, in which case the analysis

error varlance is half the backaround error variance.
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Error analysis 2

« Inthe limiting case of a very low quality measurement (S,>>S,, ), £ = 0 and the
analysis remains equal to the background.

« On the other hand, if the observation has a very high quality (5.>>S, ), £ = 1 and the
analysis is equal to the observation.

+ If both have the same accuracy, S, = S, , £ = 1/2 and the analysis is simply the
average of T, and T, , which reflects the fact that we trust as much the observation as
the background, so we make a compromise.

. In all cases, 0<k <1 , which means that the analysis is a weighted average of the
background and the observation.
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The analysis/forecast cycle of 4-D assimilation scheme

I
x-forecast (a)

! :

P; model

observations X;

N_v ¥

analysis (c)

x-analysis (d) P-analysis (e)
X P:J.

x-forecast (a) P-forecast (b)
v V
Py
observations X; feedback /
\ + f Py model

analysis (c)

x-analysis (d) P-analysis (e) ﬂ«

X ]
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Relationship between EOF and Fuzzy sets

v
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Enhancement of correlation within
fuzzy clusters:

The correlation between the variable couples:

alr temperature, humidity, pressure and
humidity

0.4-0.6 - without clussification

0.8-0.9 - within fuzzy clusters:
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Motivation for this study:

1. High spatial variability of precipitation
fleld — it is hard to describe it by means of
differential equation with a low resolution

2. Precipitations follow to changes iIn
atmospheric circulation regimes - rapid rain
rate changes are occurred after transition
from one regime to another

3. There is no considerable rain rate
correlation to other meteorological
variables, but there are feedback linkages to
be revealed

29-30 July 2014 Remote Sensing for Global Water
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Data sets:

NCEP- NCAR
Reanalysis data:

Daily and Monthly
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Seasonal correlation of Aprii-March (1995-2005)

precipitation rate with February-March NAO (index leads
by 2 months) in Mediterranean area
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Seasonal correlation of April-iviarch (1995-2009)
precipitation rate with February-March AQO (index leads

by 2 months) in Mediterranean area

F=rr=rr P —r
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. Seasonal correlation of April-May (1965-1975)

precipitation rate with February-March NAO (index leads
by 2 months) in Mediterranean area

=1 —0.8 -—-0.6 -—04 =2 0 2,3 L. 4 C.6 0.6 1
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Seasonal correlation of June-July (1995-2005)
precipitation rate with April-May NAO (index
leads by 2 months) in Mediterranean area

-1  —04 -0.6 2 -—-0.4 2 -0.2 0 0.2 O 4 L.6 o
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Seasonal correlation of September-October (1995-

2005) precipitation rate with July-August NAO (index
leads by 2 months) in Mediterranean area

Circulation to Climate Change



FUZZY ALGORITHM

« Clustering analysis is a fundamental but important tool in
statistical data analysis. In the past, the clustering
techniques have been widely applied in interdisciplinary
scientific areas such as pattern recognition, information
retrieval, clinical diagnosis, and microbiological analysis.
In the literature, the k-means is a typical clustering
algorithm, which partitions the input data set that
generally forms k* true clusters into k categories (also
simply called clusters without further distinction) with
each represented by its center (Pokrovsky et al., 2002)).
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Introduction

» Fuzzy Logic was initiated in 1965, by Dr. Lotfi A. Zadeh, professor for computer
science at the university of California in Berkley.

» Basically, Fuzzy Logic is a multivalued logic, that allows intermediate values to be
defined between conventional evaluations like true/false, yes/no, high/low, etc.

» Fuzzy Logic starts with and builds on a set of user—supplied human language rules.
» Fuzzy Systems convert these rules to their mathematical equivalents.

» This simplifies the job of the system designer and the computer, and results in much
more accurate representations of the way system behaves in real world.

» Fuzzy Logic provides a simple way to arrive at a definite conclusion based upon
vague, ambiguous, imprecise, noisy, or missing input information.
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Terminology

featurs

Weight [ka]

Chject or data point

3500

! label

200 Lorries

2500

sao0 Sports cars

1500

Medium market cars

1000

200 250

Top speed [km/h]
feature i

300

feature space
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Fuzzy Logic
» What is Fuzzy Logic?
Fuzzy Logic is a superset of conventional (Boolean) logic that has been extended to

handle the concept of partial truth, i.e. truth values between “completely true” and
“completely false”.

MON-FUZIY FUZZY
18 I"l'ﬂl‘“-':':llf P
degree | - dhegres f rall
B o] Eil:-lliﬂ 5 -
ey l-r-:lh'l : -?ﬁmmg = r--r-:..» I e
9 &
D . i
= : Vol g
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Fuzzy Logic

» How Fuzzy Logic works?

- In Fuzzy Logic, unlike standard conditional logic, the truth of any statement is a matter of degree.
(e.g How cold is it? How high shall we set the heat? )

- The degree to which any Fuzzy statement is true is denoted by a value between 0 and 1.

- Fuzzy Logic needs to be able to manipulate degrees of “may be” in addition to true and false.

» Example:
tall(x) = {
0, if height(x) < 5 ft., 1
(height(x)-5ft.)/2ft., if 5 ft. <= helght( ) <=7 ft.,
1, if height(x) > 7 ft. 057
U: univer}se of discourse (i.e. set of people) 0 > ! =
' e peop Height, ft.

TALL: Fuzzy Subset
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Fuzzy Sets

> In classical mathematics we are familiar with what we call crisp sets. In this method, the
characteristic function assigns a number 1 or O to each element in the set, depending on
whether the element is in the subset A or not.

AA
1

1— Inset A

0 — Notinset A

v

0 0.5 0.8

» This concept is sufficient for many areas of application, but it lacks flexibility for some
applications like classification of remotely sensed data analysis.

» The membership function is a graphical representation of the magnitude of participation of
each input. It associates weighting with each of the inputs that are processed.

AA

1 .,

AN ‘

»
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Operations on Fuzzy
Sets

Fuzzy AND:

v

v

[\
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Operations on Fuzzy Sets
(contd.)

Fuzzy OR:

/XN
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Operations on Fuzzy Sets
(contd.)

Fuzzy NOT:

[\

A A
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Probability Vs Fuzzy
Logic

Probability Fuzzy Logic
Probability Measure Membership Function
Before an event happens After it happened
Measure Theory Set Theory
Domain is 2U (Boolean Domain is [0,1]U (Cannot be
Algebra) a Boolean Algebra)
29-30 July 2014 Remote Sensing for Global Water
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Properties

The following rules which are common in classical set theory also apply to Fuzzy Logic.

» De Morgan's Law:

(AnB)=AnB (AUB)=ANB

> Associativity: _
(ANBYNC=A(5~C)
(AuBYUC=AU(BUC)
» Commutativity:
AnB=BnA.,AuB=BUA

» Distributivity:
AN(BUC)=(ANB)U(ANC)
ANBAC)Y=(AUBY~(AUC)
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Fuzzy Systems

‘ Fuzzification Fuzzy Inference Defuzzification
Inputs Outputs
29-30 July 2014 Remote Sensing for Global Water
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Conclusions

» Fuzzy Logic provides a different way to approach a control or classification
problem. This method focuses on what the system should do rather than trying to
model how it works.

» Fuzzy approach requires a sufficient expert knowledge for the formulation of the
rule base, the combination of the sets and the defuzzification.

» Fuzzy Logic might be helpful, for very complex processes, when there is no simple
mathematical model.
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Pros & Cons

» Advantages:

- Helpful for very complex or highly nonlinear processes.
- Allows use of “fuzzy” concepts like medium, low, etc.

- Biggest impact is for control problems.

- Help avoid discontinuities in behavior.

» Disadvantages:

- Sometimes results are unexpected and hard to debug.

- Computationally complicated.

- According to literature, Fuzzy Logic is not recommendable, if conventional
approach yields a satisfying result.

29-30 July 2014 Remote Sensing for Global Water
Circulation to Climate Change



Fuzzy System
Applications

1. Pattern Recognition and Classification

2. Fuzzy Clustering

3. Image and Speech Processing

4. Fuzzy Systems for Predictions

5. Fuzzy Control

6. Monitoring

7. Diagnosis

8. Optimization and Decision Making

9. Group Decision Making
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K-means Algorithm
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Although the k-means technique has been widely used due to
Its easy Implementation, it has two major drawbacks:

(1) It implies that the data clusters are spherical because it
performs clustering based on the Euclidean distance only;

(2) It needs to pre-assign the number, k, of clusters. Many
experiments have shown that the k-means algorithm can work
well when Kk Is equal to k*. However, in many practical cases,
It Is Impossible to know the exact cluster number in advance.
Under the circumstances, the k-means algorithm often leads to
a poor clustering performance.
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Clustering based on k-means is closely related to a number
of other clustering and location problems. A k-means
algorithm iIs measured by two criteria: intra-cluster
criterion and inter-cluster criterion. These include the
Euclidean k-medians, in which the objective Is to minimize
the sum of distances to the nearest center, and the
geometric k-center problem, in which the objective Is to
minimize the maximum distance from every point to its
closest center. K-means Is the most popular iterative
centroid-based divisive algorithm. The specific fuzzy
classification algorithm considered herein is now recalled
and briefly discussed (Matousek, 2000).
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In such algorithms the definition of centroid will be used
extensively; specifically, the centroid of M, say w , Is given

by

_ % ZN: X, (10.1)
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where X.is the I-th column of matrix X. Similarly, the
centroids of the sub-clusters X, and X, say Wiand W_ ,
are given by:

1 N, N,
W :N_Z Xy, Wy =2, Xpi (102
| i= 1=1

where X . and X, ;arethei-thcolumnsof X, and , X,
respectively
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kK-means algorithm:

Step 1. (Initialization). Randomly select a point, say ¢, € R”; then compute the centroid w of M/

(see Eq. (10.1)), and compute ¢, = w—(c, = w)

Step 2. Divide a set M={x,,x,,...,x,,} mto two sub-clusters A/, and M, according to the
followmg rule:

X, eMif X, -,

.‘\_xj eM. if

v - H <

X, =G,

o —

Step 3. Compute the centroids of M, and M, : w, and w,, as m Eq. (10.2).

Step 4. If w,=c,and w,=c, , stop, else, let ¢, =w,; ¢, =w, and go to Step 2
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Fuzzy membership matrix M

Point k's membership Fuzziness
of cluster i exponent

ﬁ _ 1

m, =
() }
ik Distance from point k to
d current cluster centre |
J=1 Jk
Distance from point k to
other cluster centres |
dy = |u, —c,| - :

clrculauorl w eiriate oiialiye



Fuzzy membership matrix M

B 1
My = _ 2/{q-1)
(e
T
1
= / 2{{g-1) J 2/{g-1) 2/{g-1) L/j?
{
ik + ik + + Tk
d, dy ck
| Gravitation to
cluster i relative
2 2i{g-1) =
_ d, _A‘ to total gravitation
1 1 1
] :;[:;—|‘,|+ 7 =) + 7 2/{g-1)
I 2k o
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Fuzzy c-partition

All clusters C together fill the
whole universe U )
Hﬂmarﬁ.’; ThE SUM ﬂ'f NE'I' \"'allfd.' C.IIUSJEJJE
memberships for a dala point do overlap
is 1, and the total for all
paoints is K

=l

C,NC, =@ foralli#j

A cluster Cis never Q - Cr- U f{??‘ all i
emply and it is
smaller than the 2<c=<K | There must be at least 2
whole universe U clusters in a c-partition and
at most as many as the
number of data points K
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Tiles data: o = whole tiles, * = cracked tiles, x = centres
E L L8 1 LI

L = —
T T T
4+
1 1 1

P2
T
1

log(intensity) 557 Hz
A

tn

(g

] -6 -4 =2 0 2
lag{intensity) 475 Hz

Plot of tiles by frequencies (logarithms). The whole tiles (o) seem well
separated from the cracked tiles (*). The objective is to find the two
clusters.
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Tiles data: o = whole tiles, * = cracked tliles, x = centres
2 L L I L

M
4
1

log(intensity) 557 Hz
A

tn
I
1

B I L I I
-8 -6 -4 - 0 2

lag{intensity) 475 Hz

1. Place two cluster centres (x) at random.
2. Assign each data point (* and o) to the nearest cluster centre (x)



Tiles data: o = whole tiles, * = cracked tiles, x = centres

2 ! %]

log(intensity) 557 Hz

-8 -5 -4 -2 0
log(intensity) 475 Hz

Compute the new centre of each class
Move the crosses (x)

Circulation to Climate Change



log(intensity) 557 Hz
éa

Tiles data: o = whale tiles. *

= cracked tiles, x = centres

L L

L L

-4 -2
log{intensity) 475 Hz

lteration 2




log(intensity) 557 Hz
W

Tiles data: o = whole tiles, * = cracked tiles, x = centres

1 L L L

[ L L L

6 -4 -2 0
log(intensity) 475 Hz

s

lteration 3




Tiles data: o = whole tiles. * = cracked tiles, x = centres

log(intensity) 557 Hz
b @

i
cn
|
|

-B 6 -4 -2 0 2
log(intensity) 475 Hz

Iteration 4 (then stop, because no visible change)
Each data point belongs to the cluster defined by the nearest centre



Fuzzy Classification of
atmospheric circulation
regimes in Asia
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1991

Classification of atmospheric circulation patterns (U850&V850) in Asia: class 1 (270-365 days)
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1991

Classification of atmospheric circulation patterns (U850&V850) in Asia: class 2 (1-160 days)
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1991

Classification of atmospheric circulation patterns (U850&V850) in Asia: class 3 (161-269 days)
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1999

Classification of atmospheric circulation patterns (U850&V850) in Asia: class 1 (1999): 220-360 days

| | | | | |
80— -
A
P R T
N L e > < B
B S e N A G R ) O
X .y Y U l /1 Ny Y Y
A B > \f_‘ . . R \4 \4 R "> r‘/' M = g
40*> f e ¥ . — #L J\‘ J i E» ‘ y ;;/' —
? - - I is /v /V//// r
A ’/ s :»¢/A/T - ) ’ /v/v/v/V'/v'/\
B O D L e B S A R,
e z /'\A / Pl f v o’ f f K V\V\q»f,,,‘/q\,
20N v - l‘ N v {a K X Vi (e - [
. > _ > > ? o\ VE '\‘\4——————,,,,4\,,,477,,,¢,,,
< _— v,i ' /V/// A /v \ '\‘\*7——\<‘\—;§——777‘777,,
Ay . 4
‘ / _ y\\\,,_nf$ _ ‘ \ :: / ? AN — ¢ - ¢ 9
0 | / Ea—— TJ+//’ & Sy M - '\‘ <\<~~4‘T¢*7/
40 60 80 100 120 140 160 180
29-30 July 2014 Remote Sensing for Global Water

Circulation to Climate Change



1999

Classification of atmospheric circulation patterns (U850&V850) in Asia: class 2: 1999 (1-130 days)
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1999

Classification of atmospheric circulation patterns (U850&V850) in Asia: 1999, class 3 (130-220 days)
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Precipitation Field Statistics in Northern Asia
CMAP Data Set for 1979-2011
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latitude

Mean Precipitation Rate (mm/day) for August, 1979-2011
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Rain Rate Variability (mm/day) - STD - in Northern Asia: August, 1989-2010

- N "yl
e (e
_e ﬂ\‘@‘.\\r@‘/(%g‘i&’

[} '.r = R / \\\\\\ 7
gy G 7S A3 P AS 1. : bo | !
: %&W ; all >
|
‘ A ‘ @ | \{ B ‘&L A ‘
110 120 130 140 150
longitude
29-30 July 2014 Remote Sensing for Global Water

Circulation to Climate Change




29-30 July 2014 Remote Sensing for Global Water
Circulation to Climate Change



Longitude

Latitude
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Rain Rate Variability Field - in Northern Asia for August, 1989-2010: EOF N1. (Pokrovsky, 2012)
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Rain Rate Variability Field - in Northern Asia for August, 1989-2010: EOF N2. (Pokrovsky, 2012)
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Classification of atmospheric circulation patterns (U850&V850) in Asia: class 3 (161-269 days)
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Average over Northern Asia Precipitation Rate (mm/day) distribution by years and monthes
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Fuzzy Classification of
atmospheric circulation
regimes in Europe
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Monthly circulation regime 1 (

the joint pattern for U850-V850 and responding
precipitation rate (mm/day) fields marked by blue color
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Decision Making
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Probabilities and Costs of Alternative
Projects: A and B

A Maximum Desired Target
Probability /' Value
Density
Distributions
‘ Performance
For Plans A
Measure Value
and R
>
A
Plan A
Cost
v
OPlan B
— . —>
Probability maximum desired
target is exceeded.
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The 95% confidence levels are associated with the higher probabilities of
exceeding
the desired maximum target and the 5% confident levels are associated with the
more desirable lower probabilities of exceeding the desired maximum target.

A 90% confidence interval
Probability ,z‘;f for Performance Measure
Density '.‘," P'v Taroet Values
Functions Performance
For Plans A
and R Measure Value
>
A
Cost
Plan B
\ >
5 % confident Probability maximum
95% confident performance target will

be exceeded.



Bayesian decision theory (4):
Bayesian Theorem

P(X |W)P
PW | X)= ( IL(>2)(W) ()

P(X) — z P(X ‘Wi)P(VVi) (2)
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Droughts and Floods are related to
long-lived extreme precipitation events
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Fuzzy-Neural Forecasting methodology

Prob.
A
A
Prob. . .
— | Simulation Model | —»
/4 L /\Q
/ >
Model Inputs Values of Various
Performance Measures
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Fuzzy classification of precipitation
anomalies in Europe (July)
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Three most frequent rain rate
distribution in July

1. Wet weather in Northern Europe
(Scandinavia and Russia) — high NAO

2. Rainy weather in Western Europe and
dry or even drought conditions in
Eastern part of European Russia

3. Extreme rainy in countries of Central and
Eastern Europe (e.g. floods)

29-30 July 2014 Remote Sensing for Global Water
Circulation to Climate Change



Fuzzy classification of the SST in North Atlantic
In May
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latitude

SST in North Atlantic: Fuzzy set N 1 - May (1958-98)
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latitude

SST in North Atlantic: Fuzzy set N 2 - May (1958-98)
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latitude

SST in North Atlantic: Fuzzy set N 3- May (1958-98)
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Monthly circulation regime 2 (summer): the joint pattern for
U850-V850 and responding precipitation rate (mm/day)
flelds marked by blue color
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Major circulation regimes over eastern
North Atlantic and Europe in summer by
three vorticity poles:

* North-Western (Scandinavia)
 \Western Mediterranean
 Caucasian
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Fuzzy classification of
precipitation regimes in July
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Rain field in Europe: July, fuzzy set N1 (mm/day)
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Rain field in Europe: July, fuzzy set N 2 (mm/day)
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Precipitation rate (anomaly field Europe) for July (1958-98): fuzzy sample N3 (m m/d ay)
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Calculating the distribution of a performance
measure from the distributions of its
iInput X(t) and predicted Y(t) variables

Prob.

Prob Performance Measure:
rob. I I
7. = 1(X\Y)
Performance
-/ > Measure values Z

Performance Measure

inputs: Distributions of
model outputs X;and Y,
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Rain rate (mm/day) monthly field for July 1988

[atitude

longitude

Predicted rain rate (mm/day) monthly field for July 1988: one month lead

[atitude
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Three most frequent rain rate
distribution in July

» Wet weather in Northern Europe
(Scandinavia and Russia) — high NAO

* Rainy weather in Western Europe and dry
or even drought conditions in Eastern part
of European Russia

* Extreme rainy in countries of Central and
Eastern Europe (e.g. floods)
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Monthly circulation regime 3 (autumn and early winter):

the joint pattern for U850-V850 and responding

precipitation rate (mm/day) fields marked by blue color

(mm/day)
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In late fall and winter the vorticity system
consists of three other poles:

* North-Western
 Northern Africa
» Arctic Russia (Kara Sea area)
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Climatology (anomalies) for July 1958-98:
averaged over 45-70 N; 5-50 E

Surface air 1o .
temperature o [ 2wl M WA 7

Precipitation
((mm/day))
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Climatology (anomalies) for July 1958-98:
averaged over 45-70 N; 5-50 E
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Preliminary conclusions

« Rain rate is more uniformly distributed in the

winter in various latitude belts across Europe
than in summer

* A zonal circulation type dominates in this

case and more precipitation is delivered from
the Atlantic.

* More intensive precipitations are occurred in
Southern Europe because of strong moisture
transport into this area from Atlantic
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Neural network methodology advantages:

 Flexibility in description of the arbitrary non-
linear dependencies

« Easy incorporation of the additional and
renewal feedbacks

« Fast self-learning feature

» High approximation fit to measurement data
achieved by NN model
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INPUT-
PREDICTOR-
PARAMETERM
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Fuzzy-Neural Model

INPUTY [HIDDET OUTPUTY
FLZZH LAVERY FLZZM]
LAFER] LAFER]

ATMOSPHERICY ATMOSFHERICY]

REGIME-AND/OR: REGIME-AND-/OR-

SEASOMNAL-CYCLE:- TRANSFORMATION- SEASOMNAL-CYCLE:-

CLASSIFICATION] OF-HIDDEN-LAYER- DECLASSIFIC ATIONTY
VARIABLESY
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Main low frequency oscillation areas
(ENSO, NAQO, AO) are included In
predictor analysis

29-30 July 2014 Remote Sensing for Global Water
Circulation to Climate Change



Why “slow oscillations”were selected?

« Slow oscillations exhibit the highest amplitudes
among other frequencies

« Slow oscillations explain the most part of total
variability

 Slow oscillations are most stable to
perturbation in initial conditions for numerical
weather models based on differential equation
solution
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Temperature Field Seasonal
Prediction
(Anomalies)
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a)truefield  n15rch 1996

Latitude

Longitude
b) forecast (lead time - 2 months)
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a) True field May, 1996
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b) Forecast (lead time - 4 months)
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a) actual forecast error field (lead time - 4 months) May, 1998
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Monthly Rain Rate Field

Seasonal Prediction for July
1988
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Rain rate (mm/day) monthly field for July 1988

[atitude

longitude

Predicted rain rate (mm/day) monthly field for July 1988: one month lead

[atitude
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Rain rate (mm/day) monthly field for July 1988

[atitude

longitude

Predicted rain rate (mm/day) monthly field for July 1988: two month lead

[atitude
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Conclusions

* First attempt to develop an intellectual
climate model has been carried out

* Its principal distinctive features are as
following:

1. Self-learning ability

2. Accumulation of past observing information
with saving all changes in inter-parameter
links

3. Adaptation of model feedbacks to changes in
observing samples and its trends
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